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Abstract

Localization and recognition of less-occurring road objects have been a challenge
in autonomous driving applications due to the scarcity of data samples. Few-Shot
Object Detection (FSOD) techniques extend the knowledge from existing object
classes to learn novel road objects given few training examples. Popular techniques
in FSOD adopt either meta or metric learning techniques which are prone to class
confusion between visually similar objects and catastrophic forgetting of already
learnt classes. In this work, we introduce a novel Meta-Guided Metric Learner
(MGML) which couples the benefits of both meta and metric learners to overcome
class confusion in FSOD. We also re-weight the features of the novel classes higher
than the base classes through a novel Squeeze and Excite module and encourage the
learning of truly discriminative features by applying an Orthogonality Constraint
to the meta learner. Our method outperforms existing approaches in FSOD on the
India Driving Dataset (IDD) by upto 11 mAP points while suffering from the least
class confusion of 20% given only 10 examples of each novel road object. We
further show similar improvements on the few-shot splits of PASCAL VOC dataset
where we outperform state-of-the-art approaches by upto 5.8 mAP points accross
all splits.

1 Introduction

Few-Shot Learning is the ability of Machine Learning models to learn novel concepts from limited
training samples [2]. This form of learning has demonstrated its potential to alleviate the requirement
of large-scale annotated datasets [5, 18] during model training, which is cumbersome and expensive
to obtain. It also has significant importance in real-world scenarios such as autonomous navigation
in unconstrained environments to detect less-occurring road objects from few-shot data samples.
Unlike standard driving datasets [9, 4], India Driving Dataset (IDD) [29] exhibits a real-world class-
imbalanced setting and contains a set of object categories with very few annotated samples [19] as
shown in Figure 1(a) - street carts, water tankers, tractors and excavators. Approaches tasked to
learn from such real-world datasets perform poorly on the less-occurring (few-shot) classes.

Recent developments in machine learning research have shown commendable progress in few-shot
learning by extending the capability of existing models trained on large-scale datasets to adapt to
sparse data. Although these models show exemplary performance for image recognition [8, 10, 16]
tasks, Few-Shot Object Detection (FSOD) emerges as a relatively unexplored and complex field
as it encompasses both localization and recognition tasks. Traditional approaches in FSOD adopt
meta-learning [35, 34] which decomposes the few-shot learning task into multiple subtasks (episodes)
and aggregates their learnings through a global objective function [8, 30]. Recent State-of-The-Art
(SoTA) approaches have adopted a simpler strategy - metric learning [32, 27], which rapidly adapts to
newly introduced (novel) classes by learning discriminative class boundaries between object classes.
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Street Cart Excavator Water Tanker Tractor
(a) Novel road objects in the open-set of the India Driving Dataset (IDD-OS).

(b) Challenges in Few-Shot Road Object Detection.

Figure 1: Examples of (a) novel road objects in the Open-Set of IDD and (b) results from existing
Few-Shot Object Detection technique FsDet [32] showing the key challenges in few-shot road object
Detection. Regions marked in red show (i) class confusion where the Excavator is misclassified as
an Autorickshaw and (i) catastrophic forgetting, where already learnt (base) classes are lost after
few-shot adaptation.

Despite the recent successes, SoTA meta and metric learners suffer from catastrophic forgetting and
class confusion as shown in Figure 1(b). This results in loss of information for the already learnt
(base) classes and poor performance on the newly identified (novel) classes. We adopt the problem
of FSOD in a real-world class-imbalanced setting to detect less-occurring road objects given a few
training samples and significantly reduce the impact of class confusion on the performance of base
and novel road objects.

Unlike traditional approaches in FSOD, we propose a novel Meta-Guided Metric Learning (MGML)
strategy which learns class-specific feature sets through a meta learner and guides a metric learner to
eliminate overlapping features between object classes. From our experiments, we notice that a large
portion of low-level features is shared between the base and novel classes which when eliminated by
the metric learner renders the model ineffective against intra-class variance and inter-class bias. To
handle this pitfall the MGML approach introduces a Split-and-Excite module which re-weights the
contribution of novel class features significantly higher than the base classes in the predictor head of
the few-shot detector. We also apply an orthogonality constraint in the meta learner to encourage
the learning of highly discriminative feature sets for each road object. Unlike existing approaches
in FSOD which demonstrate their performance on cannonical datasets like PASCAL VOC [6] we
adopt the few-shot splits in the challenging IDD-Detection dataset [19] which represents a real-world,
class-imbalanced setting. We show that our proposed method overcomes the large inter-class bias
and intra-class variance in IDD, and suffers from the least class confusion. The main contributions of
our approach can be summarized as:

• We demonstrate that class confusion in FSOD can be overcome with Meta-Guided Metric
Learning (MGML) approach which combines both meta and metric learning objectives.

• We demonstrate the learning of truly discriminative class-specific features during model
training, by applying an Orthogonality Constraint (OC) and re-weighting the constribution
of novel class features relatively higher than the base classes through the Split and Excite
(SE) module.
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• Through our approach, we demonstrate a performance improvement of upto 11 mAP
points while sufferering from the least class confusion of 20.12% on the open-set of the
India Driving Dataset (IDD) and demonstrate similar improvements on standard FSOD
benchmarks like PASCAL VOC.

2 Related Work

2.1 Few-Shot Learning

Learning algorithms in few-shot learning can be divided broadly into two categories : Metric Learning
and Meta-Learning. Metric learners [30, 26, 28] learn generalizable feature representations from
few-shot data, which are used to make predictions on novel tasks. A characteristic property of this
class of algorithms is the use of distance / similarity metrices like cosine-similarity [2, 30], euclidean
distance [26] and graph distance [25] to adapt to novel classes. Meta-Learners [8, 24] differ from
metric learners by the mechanism of encoding the knowledge from few-shot data and propagating it
to novel classes. Meta-learners can be further classified into memory based [22], model based [24]
and optimization based [8, 20] techniques. Recent works [3, 31] adopt an architecture that combines
both metric and meta learning techniques to adapt to novel classes. Our work demonstrates the
effectiveness of this technique for object detection task.

2.2 Few-Shot Object Detection

Traditional FSOD techniques [1] adopt transfer learning to adapt to novel classes but suffer from
model overfitting and catastrophic forgetting. Metric learning techniques [13, 32, 36] use distance
metrices to rapidly adapt to novel classes. FsDet [32] adopts a cosine-similarity based classifier,
while PNPDet [36] decouples the base and novel class predictors and learns a cosine-similarity based
loss function to reduce model overfitting and class confusion. Another promising direction in FSOD
is the use of meta-learning techniques in conjunction with standard object detectors. Techniques
like Meta-Reweight [12], Meta-RCNN [35], CME [15] and Add-Info [34] adopt this technique to
learn class-specific feature sets to differentiate between base and novel class features. Fan et al. [7]
learns an Attention-RPN along with a relation network [28] to learn truly discriminative class-specific
features to guide the predictor head of the object detector. Modern techniques use vision transformers
[37] and contrastive learning [27] to improve performance on novel classes. Li et al. [17] combines
meta and metric learning techniques by adopting a pearson’s distance based metric learner alongside
the meta-learner.

FSOD has been recently applied in the context of autonomous driving in [19] to detect less-occuring
road objects. The authors in [19] have identified class confusion and catastrophic forgetting as
dominant roadblocks in achieving SoTA performance for road object detection. Our work adopts this
problem definition and shows that a combined meta and metric learner can overcome the issue of
class confusion while improving performance on novel classes.

3 Method

3.1 Problem Definition

We define a proposal-based few-shot detector h(I, θ), where I refers to the input data to h(I, θ) and θ
represents the model parameters. We follow the definition of a meta learner as in [19] and train h(I, θ)
in two distinct stages - base training and few-shot adaptation. h(I, θ) adopts an episodic [30, 8]
training strategy where each episode samples a subset of N classes from the input dataset D (Dbase

during base training and Dbase ∪ Dnovel during few-shot adaptation) with K examples per class,
referred to as support set and Q examples (Q > K) from D containing N classes, referred to as query
set. The objective of the few-shot learner h(I, θ) is to learn generalizable features from abundant
training samples in Dbase during base training and rapidly adapt to novel classes in Dbase ∪Dnovel

during the few-shot adaptation stage given only K examples for each class.
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Figure 2: Architecture of the proposed Meta-Guided Metric Learner (MGML) : Our approach
employs a meta learner which guides a metric learner to learn truly discriminative features from the
input dataset to adapt to novel classes.

3.2 Meta Guided Metric Learner

In this work, we introduce a novel Meta-Guided Metric Learner (MGML) which promotes knowledge
retention in base classes by learning class-specific feature representations in Dbase ∪ Dnovel and
discriminates between classes by increasing the angular separation between feature clusters.

Unlike traditional meta or metric learning architectures our proposed MGML amalgamates the
benefits of both learning strategies to significantly reduce class confusion without any further impact
on catastrophic forgetting. As shown in Figure 2, h(I, θ) produces two sets of features, Fsup and
Fqry from the support and query sets respectively. The features in Fqry are class-agnostic as they
contain feature information from multiple object classes from the same scene, whereas the features in
Fsup are class-specfic as each input image carries information of a single object class. The MGML
architecture proceeds by decomposing h(I, θ) into two sequential branches - meta branch and metric
branch. The meta branch learns a set of attention vectors for each class (class-attentive vectors) in the
support set. It further follows the Meta-combination module described in [34] to produce attentive
feature sets (Fcls) for each object in the query set by channel-wise multiplication of the class attentive
vectors (Fsup) with the class-agnostic features (Fqry). Our experiments show significant overlaps
among feature sets in Fcls which can be attributed to overlapping features in Fsup. We mitigate this
problem by applying a novel Orthogonality Constraint (OC) described in section 3.2.1.

The metric branch learns distinguishable feature representations for each class by maximizing the
class boundaries through a non-linear similarity metric [10]. In this work we adopt a cosine similarity
metric as in [32] to minimize the similarity between class-specific feature sets Fcls learnt by the meta
branch through a metric loss Lmetric. Despite a significant reduction in confusion, introduction of a
metric learner results in a drop in novel class performance especially for classes with strong visual
similarities with the base classes. We can attribute this to the elimination of distinguishable features
for the confusing novel class objects by the metric learner. To mitigate this pitfall we re-weight the
contribution of the novel class attentive vectors significantly higher than the base classes through the
novel Split and Excite (SE) module. We describe this in detail in section 3.2.2.

The combined effect of the meta and metric learning objectives along with the SE and OC modules
demonstrates significant reduction in class confusion while boosting the performance on novel classes
in road object detection tasks [19].

3.2.1 Orthogonality Constraint

For accurate classification of the class specific features in Fcls the model h(I, θ) must learn the most
discriminative feature set Fsup which uniquely identifies each road object in the input dataset. While
standard Cross-Entropy (CE) loss function reduces the likelihood of features belonging to the same
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Figure 3: Qualitative results from the few-shot India Driving Dataset: We contrast the perfor-
mance of MGML against FsDet, for novel classes in the IDD-OS split for the 10-shot setting. FsDet
suffers from extreme catastrophic forgetting and is unable to adapt to large intra-class and inter-class
variations in IDD which are overcome by MGML.

class to be closer in the feature space it does not ensure sufficient angular separation between features
from different classes. This is important in few-shot road object detection due to the sparse feature
sets learnt from few-shot data and large visual similarity between road objects. Ranasinghe et al.[21]
imposes orthogonality in feature space for the classification task. We apply a modified orthogonality
constraint more suited to few-shot detection task.

The support set in each training episode consists of K examples from N classes in the input dataset D.
Each example {xi, yi}Ki=1 ∈ D generates a class attentive vector Fsupxi

= f(xi, θ|yi) where xi and
yi represents the input image and ground truth label and, f is the feature extractor in the meta branch.
The orthogonality constraint Loc maximizes the angular separation between vectors from dissimilar
classes and minimizes the separation between similar ones. The computation of Loc is described in
(1) where the angular separation between vectors is calculated using a cosine-similarity operator.

Loc =
∑

i,j∈(N×K)
yi=yj ,yi 6=BG

1− cos(Fsupxi
, Fsupxj

) +
∑

i,j∈(N×K)
yi 6=yj ,yi 6=BG

cos(Fsupxi
, Fsupxj

) (1)

Loc is applied as an additional loss term to the CE loss Lce in the objective function of the meta
branch Lmeta as shown in equation 2. Loc is applied only to the foreground classes as the background
(BG) class can potentially contain information from multiple object classes. The hyperparameter α
controls the contribution of the orthogonality constraint in Lmeta and is described in section 5.2.

Lmeta = Lce + αLoc (2)

3.2.2 Split and Excite Module

The proposed Split and Excite (SE) module in MGML re-weights the class-specific vectors in Fsup

pertaining to the novel classes higher with respect to the base classes in the few-shot adaptation stage.
This module highlights the sparse features from the novel objects and reduces the chance of feature
elimination due to the addition of the metric learning objective. This module can be formulated
as three distinct phases. At first, Fsup is split into base (F base

sup ) and novel (Fnovel
sup ) class vectors.

Secondly, the vectors from Fnovel
sup are re-weighted by channel-wise multiplication of a learnable

hyper-parameter λ (excite phase) as shown in (3) to produce F reweighted
sup .

F reweighted
sup = [F base

sup , (λ ∗ Fnovel
sup )] (3)

Finally, the base and novel feature vectors are aggregated with the class-agnostic query set features
to form the class-attentive feature set Fcls. We follow the aggregation process described in [34] to
produce the class-specific feature set Fclsi for each class i in the input dataset as shown in equation 4.

Fclsi = [Fqry ⊗ F reweighted
sup , Fqry − Fsup, Fqry] (4)
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Table 1: Results on few-shot splits of the India Driving Dataset (IDD): Few-Shot object detection
performance on novel classes in IDD-10 and IDD-OS splits from IDD for 5 and 10-shot settings.

Method Meta/Metic Learner IDD-OS (Open-Set) IDD-10 (Split-1) IDD-10 (Split-2)
K=5 10 5 10 5 10

Meta-RCNN [35] Meta 4.3 6.4 5.7 7.8 7.4 6.7
Add-Info [34] Meta 18.2 28.8 5.2 10.0 7.7 9.5
FsDet w/ cos [32] Metric 23.6 39.8 13.1 22.1 14.8 22.8
Ours (MGML + SE + OC) Meta + Metric 28.0 48.0 15.1 17.2 15.2 18.6

Method Meta1 Metric SE Module Orthogonality
mAPbase mAPnovelLearner Learner (λ=2.0) Constraint

Add-Info X 37.1 28.8
FsDet w/ cos X 47.4 37.0

MGML (ours)

X X 38.0 40.0
X X X 38.0 45.4
X X X 41.0 46.1
X X X X 41.5 48.0

Table 2: Components of the proposed MGML architecture: Performance comparison among
various variants of the MGML architecture shows that the combined meta and metric learner along
with the Split-and-Excite (SE) module and Orthogonality Constraint (OC) demonstrates the best
novel class performance on the IDD-OS split in the 10-shot setting.

Through our experiments, we empirically show that such a formulation helps to further boost the
performance on novel classes without any degradation in the base classes. A more detailed architecture
of the SE module has been provided in the appendix section.

3.2.3 Training Methodology

As described in section 3.1, h(I, θ) is trained in two stages. During the base training stage h(I, θ)
is trained on abundant samples in Dbase till convergence by adopting the meta training strategy in
[35] and applying the orthogonality constraint (Lmeta) to the meta branch. We use the loss functions
in [23] comprising of a binary Cross-Entropy (CE) loss at the Region Proposal Network (RPN) to
separate foreground and background proposals Lrpn, a cross-entropy loss for bounding box classifier
Lcls and a smoothed L1 loss to localize the bounding box deltas Lreg . During the few-shot adaptation
stage, we introduce the metric branch into h(I, θ) and apply the SE and OC modules in the meta
branch to adapt to K-shot data in Dbase ∪Dnovel. The box classification loss Lcls is replaced with a
combined meta loss Lmeta and a cosine similarity penalty Lmetric as described in equation 5.

L = (Lmeta + Lmetric) + Lreg + Lrpn (5)

4 Experiments

In this section, we describe our experimental setup and benchmark the performance of our proposed
MGML technique on two few-shot object detection benchmarks - India Driving Dataset [19] and
PASCAL-VOC dataset [12]. For all our experiments we report the Mean Average Precision (mAP50)
at 50% Intersection over Union (IoU) [6], which is a standardized metric for evaluating object
detection performance.

4.1 Datasets

India Driving Dataset (IDD) [29] consists of 15 object classes (in the detection dataset), representing
traffic scenes on Indian roads. For the few-shot tasks we adopt the benchmark splits in [19]- IDD-10
and IDD-OS, which represents a real-world class imbalanced setting.

IDD-10 consists of 10 representative classes from IDD which are divided into 7 base classes and 3
novel classes. Based on the choice of novel classes we consider two data splits, referred to as split-1
(bicycle, bus and truck as novel classes) and split-2 (autorickshaw, motorcycle and truck as novel
classes).

1Adapted from Xiao et al. [34].
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Table 3: Few-shot object detection performance (mAPnovel) on novel class splits of PASCAL-VOC
dataset. We tabulate results for K=1,5,10 shots from various SoTA techniques in FSOD. Results are
averaged over 10 runs. The symbol − indicates that results were not published by the authors.

Method Meta/ Metric
Learner

Backbone Novel Split 1 Novel Split 2 Novel Split 3

K=1 5 10 1 5 10 1 5 10
Meta-RCNN [35] Meta FRCN-R101 19.9 45.7 51.5 10.4 34.8 45.4 14.3 41.2 48.1
Meta-Reweight [12] Meta YOLO V2 14.8 33.9 47.2 15.7 30.1 40.5 21.3 42.8 45.9
MetaDet [33] Meta FRCN-R101 18.9 36.8 49.6 21.8 31.7 43.0 20.6 43.9 44.1
Add-Info [34] Meta FRCN-R101 24.2 49.1 57.4 21.6 37.0 45.7 21.2 43.8 49.6
CME [15] Meta YOLO V2 17.8 44.8 47.5 12.7 33.7 40.0 15.7 44.9 48.8
PNPDet [36] Metric DLA-34 18.2 - 41.0 16.6 - 36.4 18.9 - 36.2
FsDet w/ FC [32] Metric FRCN-R101 36.8 55.7 57.0 18.2 35.5 39.0 27.7 48.7 50.2
FsDet w/ cos [32] Metric FRCN-R101 39.8 55.7 56.0 23.5 35.1 39.1 30.8 49.5 49.8
FSCE [27] Metric FRCN-R101 28.2 46.2 54.1 16.5 35.9 45.3 22.2 45.4 49.4
ours (MGML + SE + OC) Meta + Metric FRCN-R101 27.3 51.4 58.0 22.3 37.9 45.6 22.7 47.1 51.2

IDD-OS consists of 14 classes, with 10 base classes and 4 novel classes. The 4 novel classes (Street
cart, Tractor, Water tanker and Excavator) were generated by expanding on the vehicle fallback
category in IDD and represents the open world deployment setting.

We use the complete train set of IDD for base training and sample N-way K-shot (K=5, 10) episodes
during few-shot adaptation. We use the val set of IDD for evaluation.

PASCAL-VOC [6] consists of 20 object classes, from which 15 are considered as base and 5 are
considered as novel classes. The 5 novel classes are randomly chosen to form 3 representative
category splits. We follow the data splits from Meta-Reweight [12] and evaluate our methods on
novel split-1 (bird, bus, cow, motorbike and sofa), novel split-2 (aeroplane, bottle, cow, horse and
sofa) and novel split-3 (boat, cat, motorbike, sheep and sofa) for K=1, 5 and 10 shot settings. For
training we use the complete trainval split from PASCAL-VOC07+12 datasets and test split of
PASCAL-VOC 2007 for evaluation.

4.2 Implementation Details

The MGML architecture is based on the proposal-based Faster-RCNN [23] object detector with a
ResNet-101 [11] backbone. Input to the network consists of a batch of 4 query images resized to 600
x 800 pixels and K-shot support images from N selected classes in Dbase ∪Dnovel, resized to 224 x
224 pixels. We consider images with object sizes greater than 100 x 100 pixels for the support set to
ensure the quality of extracted features. We follow the base training procedure in [34] to train our
model for till convergence (20 epochs). During the few-shot adaptation stage, we train our model for
12 epochs with a constant learning rate of 1 x 10−3. We use an Adam [14] optimizer and momentum
value of 0.9. The hyperparameter λ is introduced in the few-shot adaptation stage and α is applied
in both stages of model training. The values of α and λ are chosen through ablation experiments in
section 5.2. All benchmark experiments are conducted on a single GPU with 12GB memory.

4.3 Results on India Driving Dataset

We benchmark our MGML approach against the FSOD benchmark on IDD as in [19]. Table 1
records the performance of our MGML approach on IDD-10 and IDD-OS splits for 5 and 10 shot
settings. We benchmark our approach against both meta and metric learning approaches in [19].
Results show that our approach (MGML + SE + OC) outperforms SoTA approaches on the IDD-OS
split by large margins, upto 30% (11 mAP points) across 5 and 10-shot settings. Such results
establish the superiority and robustness of our approach in detecting less-occuring road objects in
class imbalanced driving environments. On the IDD-10 split, our MGML approach outperforms
SoTA meta learning approaches (Add-Info) by upto 9.9 mAP points but under-perform against
metric learning approaches. We observe that the MGML does not achieve high performance gains
for higher values of K (10-shot) in IDD-10. This can be attributed to the large intra-class variance
among road objects in IDD.

Figure 3 demonstrates the qualitative results from our approach against the SoTA metric learner
(FsDet) on the IDD-OS split for the 10-shot setting. We demonstrate the robustness of our MGML
approach against pitfalls in SoTA FSOD techniques such as large intra-class bias (Figure 3(a),3(b)),
catastrophic forgetting (Figure 3(c)) and ineffectiveness against occlusions (Figure 3(b)).
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Figure 4: Confusion matrix plotted for class prediction results from three categories of few-shot
object detection networks trained on the IDD-OS split for the 10-shot setting. Metric learners (a)
show large confusion (upto 40%) between base and novel classes. Meta Learners (b) show better
retention in performance of base classes but show large confusion among novel classes. Meta-Guided
Metric Learner (c) shows least class confusion of 20.1% with better retention of both base and novel
classes.

4.4 Results on PASCAL VOC dataset

We benchmark the MGML approach against SoTA approaches on the few-shot datasplits of the
PASCAL VOC dataset as in [27]. Following the datasplits in section 4.1 we conduct our experiments
on K=1,5, 10 settings and summarize the results in Table 3. We show that the MGML approach
outperforms SoTA approaches on almost all three splits. The maximum improvement was observed
in split-1 for the 10-shot setting where MGML approach the SoTA approach (FSCE) by 7.2% (3.9
mAP points). However, slight degradation was observed for

5 Ablations

5.1 Components of Our Proposed MGML Architecture

Table 4: Ablation for key hyper-parameters (λ and
α) in the MGML approach showing their impact on
base and novel class performance for the IDD-OS (10-
shot setting) split. The value of each hyper-parameter
chosen for the MGML approach is underlined and
associated performance scores are indicated in bold.

Parameter Value mAPbase mAPnovel

λ
(α = 0.0)

1.0 37.9 40.0
1.5 38.0 42.8
2.0 38.1 45.0
2.5 37.0 40.9

α
(λ = 2.0)

0.05 40.5 46.8
0.1 40.8 47.4
0.5 41.0 47.9
1.0 40.9 47.0
2.0 41.0 45.7

The MGML architecture can be decom-
posed into three major components. Ta-
ble 2 demonstrates the contribution of each
component on the base and novel class per-
formance. At first, we combine both meta
and metric learners into a single unified ar-
chitecture where the class specific features
learnt by the meta learner guides the met-
ric learner. Secondly, we introduce the SE
module which re-weights the novel class at-
tention vectors higher than base classes to
reduce chances of feature elimination dur-
ing few-shot adaptation. Finally, we apply a
novel Orthogonality Constrant on the meta
branch to learn the most distinguishable fea-
ture vector for each class. The combined
effect of all the three components demon-
strates the best novel class performance on
the IDD-OS split in the 10-shot setting but
continues to suffer from base class forgetting due to large inter-class bias among road objects.
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5.2 Hyper-parameters of The MGML Technique

The formulation of MGML introduces two hyper-parameters λ and α. Initially we choose the value
of α = 0 and vary the value of λ in the range of 1.0 to 2.5. We observe an increase in novel class
performance with increase in λ between 1.0 and 2.0 and a steep reduction thereafter. Thus we chose
λ = 2.0 for all our experiments. We then fixate the value of λ at 2.0 and vary the value of α in the
range of [0.05, 2.0]. We observe a small improvement in novel class performance in the range of 0.05
to 0.5. We also observe a significant boost in base class performance with the introduction of the
OC constraint. Based on the results in table 4 we choose the value of α as 0.5 for all our benchmark
experiments.

5.3 Class Confusion Between Base and Novel Classes

Class confusion stands out as a prominent issue in few-shot object detection in the context of
autonomous driving as road objects share a large number of visual features [19] among themselves.
Figure 4 compares class confusion of our approach (MGML) with popular FSOD architectures (FsDet
and Add-Info) through confusion matrices. FsDet (metric learner) shows the highest confusion (43.9
%) between both base and novel classes. On the other hand, Add-Info (Meta-Learner) shows reduced
confusion among base classes but elevated confusion among novel classes (average confusion of
31.05 %). Finally, MGML shows the least confusion between both base and novel classes (20.12 %).
We attribute the contribution of the meta branch to the reduction in confusion among base classes and
the metric branch for the improvements on the novel classes. Objects with strong visual dissimilarity
with existing classes in the dataset like excavator continue to suffer from class confusion resulting
from the lack of samples in the few-shot setting.

6 Conclusion

In this work, we introduced a novel FSOD technique - Meta-Guided Metric Learner (MGML) to
overcome the impeding effect of class confusion in detecting less-occurring road objects in driving
environments. Unlike existing approaches in FSOD we employ both meta and metric learning
objectives in an unified proposal-based architecture. The introduced Orthogonality Constraint and
Split and Excite module ensures the learning of discriminative feature sets to overcome inter-class
variance and intra-class bias among road objects. Our approach achieves SoTA performance on the
open-set split of the challenging India Driving Dataset by demonstrating upto 30% improvement in
novel class performance over existing methods in a real-world class-imbalanced setting. Alongside
improvements in absolute performance, the MGML approach suffers the least class confusion of
20.12% among SoTA FSOD approaches. Catastrophic forgetting of base classes continues to be an
impeding issue in few-shot road object detection and will be addressed in future research.
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A Appendix

A.1 Architecture of The Split and Excite Module

Figure 5: Architecture of the proposed Split and Excite module.

Following the definition of the Split and Excite (SE) module in section 3.2.2 the sub-network can be decomposed
into three distinct parts. Figure 5 demonstrates the detailed architecture of the Split and Excite module. The
output of the meta branch is a set of class specific attention vectors Fsup. At first, we segregate the class attention
vectors into base and novel classes. Secondly, we pass the attention vectors belonging to the novel classes and
the learnable hyper-parameter λ through a 1 × 1 convolution layer which re-weights the novel class vectors
higher than the base classes, λ > 1. Finally, we concatenate the re-weighted feature vectors of the novel classes
with those of the base classes to produce F reweighted

sup .

A.2 Additional Qualitative Results on IDD

Figure 6 demonstrates addiitonal qualitative results from the MGML approach on the novel classes in IDD-OS
split of the India Driving Dataset (IDD) in the 10-shot setting. The positive results indicates that our method is
resistant to the major pitfalls in standard object detection algorithms - occlusions, variational lighting etc. It also
points out the reduction in class confusion between co-occuring and visually similar classes such as street cart
and bicycle (visually similar), or motorcycle and rider (co-occuring). The negative results indicate the existence
of class confusion in object classes which have large visual similarity with existing classes such as Excavator
(JCB). Such issues will be addressed in future research.
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Positive results from novel classes in IDD-OS for 10-shot setting.

Negative predictions on IDD-OS split in 10-shot setting.

Figure 6: Qualitative results from the MGML approach on the few-shot India Driving Dataset (IDD-
OS split) for the 10-shot setting. The first three rows in the figure show positive predictions while
the final row shows failure cases where we continue to observe class confusion and catastrophic
forgetting.
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